- Renal Agenesis and
        Hypoplastic Lung Syndrome
 
        Vol 2. No. 10   
     
     
    Ande L. Karimu MD PhD. 
    
      - Resident Ob-Gyn
 
      - Yale New Haven Hospital
 
         
        Renal agenesis and hypoplastic lung syndrome are congenital malformations of the neonates
        involving the kidneys and the lungs respectively i.e. the newborns are born with these
        disorders. The etiology of these malformations is probably multifactorial i.e. there are
        both inherited and environmental factors in the causation of the malformations. Oftentime
        both conditions co-exist as part of multiple congenital malformations. 
         
          
         
        Renal Agenesis 
         
        Renal agenesis is the complete absence of the kidney(s). The kidneys are the organs that
        filter the blood of waste products, eliminating them as urine. 
         
        There are two kidneys in the human under normal circumstances. Absence of the kidney could
        be unilateral or bilateral. If it is unilateral, it means only one kidney is absent.
        However, if it is bilateral, it means both kidneys are absent. Unilateral absence of the
        kidneys is compatible with life whereas bilateral absence of the kidneys is incompatible
        with life. 
         
          
         
        Development of the Kidneys 
         
        The kidneys are parts of the urinary system. Other members of the system include the
        ureters, bladder and the urethra. The urinary system develops in close association with
        the genital organs. 
         
        The kidneys are developed in three main stages called the pronephros, mesonephros and the
        metanephros (nephros means kidneys). The pronephros are non functional and soon degenerate
        being replaced by the mesonephros which function for a short time before they are in turn
        replaced by the metanephros, the definitive kidneys. 
         
        The permanent kidneys i.e. the metanephros begin to develop in the fifth week of
        intrauterine life. Urine formation begins about the end of the first trimester i.e. the
        12th week and continues for the rest of the pregnancy. The urine produced by the fetus is
        secreted into the amniotic cavity and forms part of the amniotic fluid. In the fetus, the
        placenta is the main organ of excretion, therefore, the kidneys dont need to become
        functional for excretory purposes during intrauterine life. However, the kidneys must be
        ready to assume their excretory functions at birth. 
         
        Earlier in pregnancy, the kidneys are located in the pelvis but by the ninth week of
        pregnancy the kidneys have attained their adults positions in the abdomen. This
        variation in positions is due to the differential increase in the growth of the abdomen.
        For this reason, it is often observed that the kidneys have various sources of blood
        supply during development which gradually degenerate as the kidneys ascend to the
        abdominal cavity. Not surprising, the adult kidneys sometimes have abberant blood supply
        due to its migratory developmental nature. 
         
        From the foregoing discussion, it becomes apparent that complete absence of the kidneys
        (bilateral renal agenesis) results when the metanephric buds fail to develop while
        unilateral renal agenesis will result from ipsilateral (one sided) metanephric bud
        absence. 
         
          
         
        Clinical Features 
         
        During prenatal life renal agenesis could be diagnosed with ultrasound examination both by
        the observation of oligohydramnios i.e. reduced amniotic fluid volume and absence of the
        kidney(s). In most centers in USA targeted ultrasound for detailed anatomical survey of
        the fetus is carried out around the 18th -20th week of gestation. At this time, based on
        the reduced fluid volume clinical suspicion is high, thus scheduled detailed anatomical
        survey will reveal the absence of the kidney(s). It is pertinent to note however, that
        ultrasound examination may not always reveal the absence of kidneys due to
        oligohydramnios. Moreover, adrenal tissues may be confused with renal tissue. In this
        situation, serial evaluation over a period of 4-6 hours to confirm absence of urine
        production as demonstrated by failure to visualize the fetal bladder may be very useful in
        establishing with certainty the diagnosis.  
         
        Suffice to say that absence of one kidney is compatible with life with the other kidney
        enlarging to compensate for the absent one. It is for this reason that as adults we could
        donate one kidney and still carry on effectively with the remaining kidney. In the
        unlikely event of an absent kidney not diagnosed before birth, it may be diagnosed in
        adulthood as an incidental finding during imaging studies of the abdomen for some other
        reasons.  
         
        With regards to bilateral renal agenesis, the fetus is usually stillbirth in more than 40%
        of cases while the majority of infants born alive usually die within 4 hours of life. The
        characteristic features of the infants described as Potters facies include:
        redundant and dehydrated skin, wide set eyes, prominent fold arising at the inner canthus
        of each eye, parrot beak nose, receding chin, large low set ears with deficient auricular
        cartilages, absent urine output and non palpable kidneys. Death shortly after birth is
        attributed to either pulmonary hypoplasia or renal failure. Other congenital anomalies
        associated with bilateral renal agenesis include absence of the urinary bladder, bilateral
        pulmonary hypoplasia, genital organs abnormalities such as absence of the vas deferens and
        the seminal vesicles in the males and the uterus and upper vagina in the females, anal
        atresia, absence of the rectum and the sigmoid colon, esophageal and duodenal atresia,
        single umbilical artery and major abnormalities of the lower limbs. 
         
        Management of Renal Agenesis 
         
        As earlier on mentioned, unilateral renal agenesis is compatible with life with the only
        available kidney enlarging to compensate for the absent pair. On the other hand, complete
        absence of the kidneys is not compatible with life. The fetus usually die in utero or
        shortly after birth. The best management approach therefore is taking preventive measures
        as much as is possible to prevent congenital malformations from occurring. For instance a
        pregnant woman with uncontrolled diabetes mellitus is proned to having a baby with
        congenital malformations including renal agenesis. Therefore adequate control of diabetes
        in pregnancy will reduce the likelihood of developing this malformation. 
         
          
         
        Hypoplastic Lung Syndrome 
         
        This is simply underdevelopment of the lungs. It commonly results from abnormal
        development of the diaphragm, a muscular structure which separates the thoracic (chest)
        from the abdominal cavity. 
         
        It also may occur as part of multiple congenital anomalies affecting a fetus including:
        renal agenesis, urinary tract outflow obstruction, extra-amniotic fetal development,
        thoracic dystrophies. Other associations include intrauterine central nervous system
        damage sufficient to decrease fetal breathing movement, trisomy 21, erythroblastosis
        fetalis otherwise called fetal isoimmunization and certain drugs e.g.ACE inhibitors. As
        earlier mentioned, abnormal development of the diaphragm is the more common cause and this
        is amenable to surgical correction soon after birth. I will therefore describe in more
        detail development of the diaphragm and how its malformation may result in hypoplastic
        lung syndrome. 
         
          
         
        Development of the Diaphragm 
         
        The diaphragm develops from four structures including the septum transversum,
        pleuroperitoneal membranes, dorsal mesentery of the esophagus and the body wall. 
         
        The septum transversum is that part of the embryonic mesoderm which separates the
        ventrally located pericardial cavity from the dorsally located gut. It forms the
        definitive central tendon of the diaphragm. The central tendon is a trifoliate aponeurotic
        structure which fuses with the pericardium of the heart. 
         
        The pleuroperitoneal membranes separate the pleural and the peritoneal cavities. The
        pleural cavity contains the lungs while the peritoneal cavity contains the abdominal
        organs. By the sixth week of intrauterine life the pleuroperitoneal membranes usually fuse
        with the dorsal mesentery of the esophagus and the septum transversum thus effectively
        demarcating the pleural and the peritoneal cavities (i.e. the chest and the abdomen). In
        fetal life, the pleuroperitoneal membranes represent a large portion of the diaphragm,
        however, they represent a small part of the definitive diaphragm. 
         
        The dorsal mesentery of the esophagus is a double layer of peritoneum which forms the
        median portion of the diaphragm. Two slips of muscles called the right and left crura
        arise from the lumbar vertebrae to grow into the dorsal mesentery around the ninth to
        twelfth week of intrauterine life.  
         
        The body wall is the most peripheral part of the diaphragm. The developing fetal lung and
        pleural cavities usually invade the body wall. At this time the body wall divides into two
        layers with the inner layer forming the definitive peripheral rim of the diaphragm. 
         
        During development of the diaphragm, the septum transversum the first indication of the
        developing diaphragm lies in the cervical (neck) region opposite the third to the fifth
        cervical somites. During the fifth week of development, the muscle cells from these
        somites migrate into the developing diaphragm, taking their nerves (phrenic nerves) with
        them from the cervical region. As the diaphragm migrates to its final location in the
        thorax the phrenic nerve accompanies it, thus traversing a long course of almost 30
        centimeters. 
         
          
         
        Congenital Diaphragmatic Hernia. 
         
        This is a relatively common congenital malformation of the diaphragm occurring in 1:2000
        newborn infants. It results from a defect in the posterolateral region of the diaphragm.
        Congenital posterolateral defect of the diaphragm is due to non fusion of the
        pleuroperitoneal membranes with the septum transversum and the dorsal mesentery of the
        esophagus. It is usually unilateral, occurring commonly on the left side. The reason for
        the left sided preponderance is due to the early closure of the right pleuroperitoneal
        membrane secondary to the presence of the bulky embryonic liver on the right side.
        Normally, the pleuroperitoneal membranes fuse with the other diaphragmatic components by
        the seventh week of intrauterine life. If a pleuroperitoneal membrane is unfused by the
        time the intestine return from the umbilical cord to the abdomen around the tenth week of
        intrauterine life, the intestine usually pass into the thorax. The spleen and stomach may
        also herniate into the thorax. At birth, the thoracic intestines usually dilate with
        swallowed air, compromising the functions of the heart and lungs. The mediastinum and its
        contents including the heart is usually displaced to the right while the lungs are
        hypoplastic i.e. underdeveloped. Normally during pregnancy the lungs are filled with
        fluids which helps to maintain the lung volumes. However, with compression from
        intraabdominal organs the lungs are not able to accumulate enough fluid to maintain the
        requisite volumes hence their underdevelopment. 
         
          
         
        Diagnosis of Diaphragmatic Hernia 
         
         
        At birth the newborn infant will demonstrate evidence of respiratory distress syndrome viz
        dyspnea, tachypnea, cyanosis, tachycardia etc. The lungs may be dull to percussion due to
        non expansion after birth and air entry to the lungs will be remarkably reduced on
        auscultation. Imaging studies of the chest and abdomen will reveal the presence of
        abdominal organs in the thoracic cavity. 
         
        Clinical Management 
         
        The immediate goal is to return the abdominal organs to their definitive positions in the
        abdomen and closure of the diaphragmatic defects. Once the hernia is reduced, the affected
        lungs usually expand with aeration and ultimately achieve their normal size. 
         
        Conclusion 
         
        The etiology of congenital anomalies is usually multifactorial i.e.both genetic and
        environmental factors play a role. Some of the causative factors are amenable to control
        by the way of preventive measures. Some good examples are the recommended intake of folic
        acid in pregnancy to reduce the likelihood of malformations of the brain and tight glucose
        control to ameliorate possible renal malformation. Others include avoidance of certain
        medications such as ACE inhibitors during pregnancy and avoidance of over the counter
        medications of unproven safety. Until such a time that we are able to determine with
        certainty the etiology of congenital anomalies, the best that can be done is mainly
        preventive. In any case, it is said that prevention is better than cure and certainly
        cheaper in the present managed health care environment. 
         
     
    Next
    Journal Article   |